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n today's competitive market environment, there is 
an urgent need for the transformer manufacturing 
industry to improve transformer efficiency and to 

reduce costs. High-quality, low-cost products and 
processes have become the key to survival. Trans- 
former efficiency is improved by reducing load and no- 
load (iron) losses. Low costs for the transformer user 
include costs for the purchase of the transformer, instal- 
lation, maintenance, and losses. Among the losses, iron 
losses are particularly important, considering the fact 
that the transformer is continuously energized, and, 
therefore, considerable energy is consumed in the core, 
while load losses occur only when the transformer is on 
load. Iron losses constitute one of the main parameters 
of transformer quality. Accurate prediction of trans- 
former iron losses is an important task in transformer 
manufacturing, since it protects the manufacturer from 
paying loss penalties. 

In this article, methods for iron loss reduction during 
manufacturing of wound-core distribution transformers 
are presented. More specifically, measurements taken at 
the first stages of core construction are effectively used, 
in order to minimize iron losses of transformer (final 
product). To optimally exploit the measurements (feed- 
back), artificial intelligence methods are applied. It is 
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Figure 1. Assembled active part o f  wound core distribu- 
tion transformer 
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shown that intelligent systems are able to learn and inter- 
pret several variations of the same conditions, thus help- 
ing in predicting iron losses with increased accuracy. 

Transformer losses 
Transformer losses are categorized as no-load losses (or 
iron losses) and load losses. Iron losses include losses 
due to no-load current, hysteresis losses and eddy cur- 
rent losses in core laminations, stray eddy current losses 
in core clamps and bolts, and losses in the dielectric cir- 
cuit. Load losses include losses due to load currents, 
losses due to current supplying the losses, and eddy cur- 
rent losses in conductors due to leakage fields. In order 
to produce a high-efficiency transformer, all of these 
losses must be reduced to a minimum. This can be 
achieved in one or more of the following ways: 

Use lower loss core materials 
Decrease core flux density 
Decrease flux path length. 

In general, these actions lead to increased load losses 
and costs. Alternatively, the designer can reduce the 
load losses by one or more of the following: 

Use lower loss conductor materials or winding 
methods 
Decrease current density 
Decrease current path length. 

These steps however result in increased iron losses 
and costs. Steps that tend to decrease the iron losses 
tend to increase the load losses and vice versa. The deci- 
sion on the best design is based on the loading and other 
specifications of each individual transformer application. 
In most cases, it is required that the transformer is 
designed with minimum iron losses. 
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Figure 2. Typical loss curve 

The losses specified by the customer are called guaran- 
teed losses. The engineer designs the transformer in order 
to achieve iron and load losses as close as possible to the 
guaranteed ones. In addition, the losses must be within 
the tolerances defined by the international (ANSI, IEC, 
etc.) standards, in order to avoid paying loss penalties. 

Losses that are calculated during the design phase are 
called designed losses, so, for each transformer studied, 
the designed iron losses and the designed load losses 
are calculated in advance. 

At the end of transformer production, the transformer 
losses are measured. These losses are called actual loss- 
es. The bottom line is that the actual iron losses and the 
actual load losses should conform to customer require 
ments and international standards. 

Calculating Iron Losses 
Typically, iron losses depend upon the grade of steel, its 
thickness, current frequency, magnetic flux density, and 
weight. These factors are taken into account during the 
transformer design stage. A number of additional factors 
affect iron losses during manufacturing, such as the kind 
of lamination insulation, annealing, core construction, 
quality of assembly, etc. However, it is not possible to 
consider all these factors analytically, and, therefore, the 
calculations are based on graphs and tables obtained 
from past measurements on actual transformers. The 
basic data taken from these tables are updated by coeffi- 
cients that account for the specific features of the mag- 
netic core design and technology of core production. 

Figure 1 shows the assembled active part of a wound 
core distribution transformer. It can be seen that two 
small individual cores (width of core window equal to 
F1) and two large individual cores (width of core window 
equal to F2) need to be assembled. In general, the width 
F2 is twice that of F1. 

Indicative loss curves traditionally used to estimate 
iron losses of individual cores and of assembled trans- 
formers are shown in Figure 2. Using these loss curves, 
only the influence of the rated magnetic induction on iron 
losses for each specific magnetic material is considered. 

Producing Wound Core Transformers 
The production of wound core distribution transformers 
starts with slitting of the raw material into bands of stan- 
dard width. Then, the slit sheets are cut to predetermined 
lengths and are wound on a circular mandrel. After that, a 
suitable press gives a rectangular shape to the circular 
core. This process significantly deteriorates the core 
physical and electrical properties. To restore these prop 
erties, annealing follows at temperatures in a range of 760- 
860" C in a protective environment containing pure dry 
nitrogen mixed with hydrogen up to 2 percent. 

The annealing cycle adopted is divided into four phas- 
es: starting and heating up phase, to avoid oxidation and 
to normally achieve the temperature of 825" C; soaking 
phase, to achieve homogeneous temperature distribu- 
tion for all cores; slow cooling phase, to slowly cool the 
load to avoid the development of internal stresses in the 
cores; and fast cooling phase, for reduction of the tem- 
perature to 380" C, so as to avoid oxidation of cores 
when they are exposed to the natural environment. 

This procedure introduces the following additional 
difficulties in the production of wound cores, when com- 
pared to the production of the stacked cores: air gaps 
may diverge due to the tolerances of the machine per- 
forming the cutting and winding of sheets and due to dif- 
ficulties in the processing of the magnetic material; 
desirable dimensions of wound cores cannot accurately 
be obtained as in stacked cores; core formation may 
deteriorate the magnetic material insulation; and home 
geneous temperature distribution is hard to be obtained 
during the annealing procedure. 

It should be noted that, during transformer construc- 
tion, actual weights and losses of individual cores 
diverge from the theoretical ones. Although these devia- 
tions are within predictable statistical limits, they cause 
variations in the iron losses of assembled transformers. 

The conventional technique used to reduce the varia- 
tion in iron losses of assembled transformers is to p r e  
measure and assign a grade (quality category) to each 
individual core and then combine higher and lower grad- 
ed individual cores to achieve an average value for the 
entire transformer. This is referred to as conuentional 
grouping process. 

AI Approach to Minimize losses 
The first step in the application of artificial intelligence 
methods is to collect measurements during the first 
stages of core construction. When a satisfactory number 
of measurements has been collected, methods are 
applied in order to learn the information included in the 
databases. This training stage is executed offline, provid- 
ing an iron loss prediction model. 

The second stage of the method includes the online 
application of the iron loss prediction model in order to 
reduce the variation of iron losses of assembled trans- 
formers. 
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Attribute 
Ratio of actual over theoretical total iron losses of the four individual cores 

The test sets have the same structure as the learning 
sets, i.e., they are created in exactly the same way, but 
comprise different (independent) measurement sets. For 
example, the learning and test sets for environment 1 
consist of 2,240 samples. Each of the measurement sets 
comprises the nine attributes of Table 2, and 1,730 mea- 
surement sets were used as the learning set, and the rest 
as test set. 

Classifying losses Using Decision Trees 
Classification of specific iron losses into two classes 
(acceptable or unacceptable) is achieved using decision 
trees. The criterion for classifying transformer iron loss- 
es as unacceptable is based on the comparison of the 
actual iron losses to the designed iron losses. 

In Figure 3, a characteristic decision tree (DT) is 
illustrated, developed with a confidence level of 0.999. 
Its success rate, tested with the independent test set, 
is 96 percent. 

Except for the root node (or top node), every node of 
a decision tree is the successor of its parent node. Each 

of the nonterminal nodes (or test nodes) has two suc- 
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AnR1 

cessor nodes. Nodes that have no successor nodes are 
called terminal nodes. In order to detect if a node is ter- 
minal, i.e., sufficiently class pure, the classification 
entropy of the node with a minimum preset value H,,,, 
is compared. If it is lower than H,,,, then the node is 
sufficiently class-pure, and it is not further split. Such 

I Attribute 
I Ratio of actual over theoretical total iron losses of the four individual cores 

- -  
p e 2 :  Attributes for the prediction of transformer specific Iron losseq Creating Learning and Test Sets 

AlTR4 
AlTR5 

For the creation of the learning sets, mea- 
surements collected during the initial 
stages of transformer manufacturing are 
grouped according to the supplier, grade, 
and thickness of magnetic material. Each 
different supplier, grade, and thickness of 
magnetic material is categorized as a dif- 
ferent subset, called environment in the 
sequel. In the application presented, three 

. .- . -. - ... 
Rated magnetic induction, B 
Thickness of core leg. Eu 

AlTR4 
AlTR5 

1 Rated magnetic induction, B 
1 Thickness of core leg. Eu 

~ 

Rario of acr4a over rneorer CUI tow we gnr of 1178 four nd v a ~ a l  cores - 
maIer 01 average spec f c losses of rhe fou  .na v dual cofos . .  ~~ 

AnR6 
ATTR7 
AnR8 
AlTR9 

Width of core leg. D 
Height of core window, G 
Width of core window, F1 
Transformer volts per turn 

different environments are considered, 
each defined in Table 1. For example, environment 1 is 
characterized by magnetic material of grade M3 accord- 
ing to ANSI 1983, thickness of 0.23 mm, while the suppli- 
er of material was Supplier A. 

The databases are composed of sets of actual industri- 
al measurements and each measurement set @AS) is com- 
posed of a collection of input/output pairs. The input 
pairs or attributes are the parameters affecting trans- 
former iron losses. Attributes have been selected based 
on extensive research and transformer designers’ experi- 
ence. They include grain oriented steel electrical charac- 
teristics, core constructional parameters, and quality 
control measurements of core production line. The list of 
nine attributes initially seJected is shown in Table 2. The 
output pairs comprise the actual specific iron losses. 

nodes are labeled LEAF. Otherwise, a suitable test is 
sought to divide the node by applying the optimal split- 
ting rule. The optimal splitting rule decides what is the 
best attribute and its threshold value, so that the addi- 
tional information gained through that test is maximized. 
The best attribute and its threshold value are obtained 
by sequential testing of all attributes and candidate 
thresholds and comparing their information gain. In the 
case that no test can be found with a statistically signifi- 
cant information gain, the node is declared a DEADEND, 
and it is not split. 

The notation used for the DT nodes is explained in 
Figure 4. The acceptability index of a node is defined as 
the ratio of the acceptable MS in the subset E,, of node n 
to the total number of MS in E,,. For example, among the 
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1,730 MS of node 1, the 1,642 MS (94.91 percent, i.e., 
acceptability index of 0.9741) are acceptable, while the 
remaining 88 are unacceptable. 

The terminal nodes correspond to  a class label 
(acceptable or unacceptable) that can be used to classify 
any measurement set as either belonging to the learning 
set or a completely new one. The class of a terminal 
node is assigned, using its acceptability index. For exam- 
ple, if the acceptability index of a terminal node of the 
DT is 0.9, then the MS falling to this node have a 90 per- 
cent probability of being acceptable. 

The DT of Figure 3 consists of four test and five termi- 
nal nodes and has automatically selected only three 
attributes among the nine candidates. These attributes 
in decreasing order of significance are ATTRS, ATTR1, 
and ATTR4. ATTR9 corresponds to transformer volts per 
turn, ATTRl is the ratio of actual over theoretical total 
iron losses of the four individual cores, and ATTR4 rep- 
resents the rated magnetic induction. The selection of 
these attributes is reasonable and expected, since they 
are all related to the transformer iron losses. 

Each terminal node produces one decision rule, on 
the basis of its acceptability index. For example, from 
terminal node 7,  the  following rule is derived: i f  
A7TR99.3568 and AiTR4>13802, then transforrner-specif- 
ic iron losses are of acceptable quulity. Consequently, 
based on the decision tree of Figure 3, rules useful for 
the design (parameters ATTR4 and ATTR9) and also for 
the core production (parameter ATTR1) can be derived. 

It is desirable to construct transformers leading to 
nodes 7, 8, and 4, if it is technically and economically fea- 
sible. These nodes have acceptability indexes greater 
than 93 percent. 

NONTERMINAL NODE 

@ NodeNumber 
. Number of MS in subset En 

A n R %  4 3568 Splitting test 
0 9491 ' Acceptability Index 

TERMINAL NODE 

@ Node Number 
Number of MS in subset En 

0 9147 Acceptability Index 
DEADEND Node Type 

(LEAF/DEADEND) 

Figure 4. Notation of the DT nodes 

The measurement sets  following the  rule 
ATTR9S4.3568 and ATTR1>1.0862 lead to node 5 and are 
characterized as unacceptable. In order to avoid this, 
ATTRl must be reduced during transformer construction. 
The method is to reduce the actual total single-phase iron 
losses of individual cores by removing from the trans- 

former cores set one or more cores with high single-phase 
iron losses and adding cores with lower ones. 

The measurement se t s  following the rule 
ATTR9>4.3568 and ATTR4>13802 lead to node 7 and are 
characterized as  acceptable. This is equivalent to  
increasing the volts per turn (ATTR9) and also increas- 
ing the rated magnetic induction (ATTR4). Design engi- 
neers determine both these parameters. In fact, the 
rated magnetic induction offers enough flexibility, there- 
fore, it is desirable to design transformers leading to this 
node, if it is technically and economically feasible. 

Predicting losses Using Neural Networks 
There is no simple relationship among the parameters 
involved in the production process that expresses analyti- 
cally the transformer iron losses. Artificial neural net- 
works have the ability to automatically learn relationships 
between inputs and outputs independently of the size and 
complexity of the problem. Neural networks have, there- 
fore, been applied to iron loss prediction. 

Extensive experiments have shown, however, that the 
performance of the neural networks is unacceptable if 
samples of all environments were used as a training set. 
Similar results have been observed even if the parameters 
of the environment (i.e., the supplier, grade, and thickness 
of the magnetic material) were used as neural network 
input vectors. Hence, the training set is divided into s u b  
sets, each corresponding to a specific environment. This 
approach has provided very satisfactory results. 

A multilayer feed-forward neural network structure 
with one input layer, one hidden layer, and a single out- 
put neuron was found to provide satisfactory results. 
The input neurons correspond to eight attributes select- 
ed by applying decision trees. These attributes include 
the rated magnetic induction as well as the magnetic 
material average specific losses of the four individual 
cores at 15,000 Gauss and at 17,000 Gauss. Moreover, 
attributes such as the ratio of actual over theoretical 
total weight of the four individual cores and the ratio of 
actual over theoretical total iron losses of the four indi- 
vidual cores are also selected. The remaining three 
attributes are formed by the combination of other mea- 
surements. The number of neurons of the hidden layer 
was selected so that the performance of the network can 
be generalized for each given environment. For example, 
for environment 1, one hidden layer of five neurons was 
found completely adequate. The activation function for 
all neurons is the sigmoid function. 

Figures 5 and 6 present the Quantile - Quantile (Q-Q) 
plots of the specific iron losses, for the environment 1, 
using the typical loss curve and the proposed neural 
network method, respectively. According to the Q-Q 
plot method, the data of real specific iron losses is 
plotted versus the predicted ones. Perfect prediction 
lies on a line of 4 5  slope. It is observed that the neural 
network method provides more accurate results than 
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where cores can be placed. The two outer positions 
are occupied by small cores, while the other two 
middle positions by large cores (Figure 1). Each 
small core can be put to any of the two positions and 
to any of the L/2 transformers. The same applies to 
each large core. From all possible combinations of 
grouping L/2 transformers, only one combination 
provides the optimum iron loss performance. 

The effectiveness of neural networks when 
applied to the above selection process is strongly 
reduced, as t he  number of individual cores 
increases. For example, for L=6, the combinations 
of grouping the L/Z transformers are 1,800, while 
for L=48 the combinations are aDDroximatelv 
4*10’:’. For this reason, a genetic algorithm 
aDDroach is adoDted for this task. This orocedure Figure 5. Prediction o f  transformer specific iron losses for enuiron- 

ment 1 using the typical loss curve (current practice) 
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Figure 6. Prediction of transformer specific iron losses for enuiron- 
ment 1 using the proposed neural network method 

the typical loss curve. This is due to the learning 
capabilities of the neural network approach as 
well as due to the fact that more parameters 
(attributes) are taken into consideration. 

Table 3 presents the average absolute relative 
error (AARE) on test set for the three environ- 
ments considered, following the current practice 
(loss curve) and the proposed method (neural 
network). In all cases,  the neural network 
method provides an improved accuracy by more 
than 45 percent. 

Transformer Assembly 
Using Genetic Algorithms 

.. 
significantly improves the grouping process in 
relation to the conventional method. 

According to the genetic algorithm based grouping 
process, the possible arrangements of the L/Z trans- 
formers (sets of arrangements) are represented as 
chromosomes whose genetic material consists of 
core numbers (indexes). An initial population of chre  
mosomes is generated by selecting randomly L/2 sets 
of core numbers (arrangements). The total loss func- 

Production Batch 

The information that~the neural networks have 
learned is exploited online in order to reduce the 

More soecificallv. iron losses Dredicted bv the 

Figure Z Average absolute relative error in prediction of trans- 
former iron losses for environment 1 for various production batches 
using the proposed genetic algorithm based grouping process Of iron losses Of 

” ,  
neural networks are used to improve the grouping 
process. Assuming that an even number of L small cores 
and L large cores are available, then L/2 transformers 
can be assembled. Each transformer has four positions 

tion is defined as the sum of the iron losses of the L/Z 
transformers, predicted by the neural network, while the 
fitness function is the inverse of the total loss function. 
The aim of the genetic algorithm is to minimize the total 
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loss function or to maximize the fitness. Following 
a proportionate scheme for parent selection, a set 
of new chromosomes (offspring) is produced by 
mating the parent chromosomes and applying 
uniform crossover and mutation operations. 

Figure 7 illustrates the average absolute rela- 
tive error in prediction of transformer iron loss- 
es, tor the environment 1, for 18 production 
batches, using the proposed genetic algorithm 
based grouping process. It is observed that the 
proposed grouping process provides an AARE 
smaller than 1.60 percent for all of the produc- 
tion batches. This is compared with an AARE of 
3.15 percent in prediction of transformer iron 
losses, which usually observed by the conven- 
tional grouping process. 

Description of Software Used 
Figure 8 shows a typical screen of the toolbox 
used for the creation of the learning sets, the pre- 
diction of iron losses using decision trees and 
neural networks, and the application of genetic 
algorithms. The appropriate reports and statistics - .. . 
are provided in graphical or tabular form. For example, 
Figure 8 shows statistics about the production batch 1160- 
047, namely, 50 transformers, 160 kVA, 20/.4 kV, 50 Hz. For 
the specific production batch, the average losses predict- 
ed by the proposed artificial intelligence technique are 
313.27 W, while the average actual losses are 314.07 W. 

This toolbox is currently used by different types of 
users: transformer designers, staff in core production, 
and those responsible for quality control. Each user has 
different needs and access rights. For example, the staff 
in core production collects measurements of individual 
cores and applies the genetic algorithm based grouping 
process, while the transformer designer collects informa- 
tion about a specific production batch (job order) and 
previews or prints reports and statistics. The toolbox is 
very flexible, and all it needs for maintenance is to period- 
ically add new measurements and retrain the neural net- 
works. The toolbox has proved useful for the evaluation 
of the adopted techniques in transformer manufacturing. 
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